
A Grid-Enabled Problem Solving Environment (PSE) for Design Optimisation
within Matlab

G. E. Pound, M. H. Eres, J. L. Wason, Z. Jiao, A. J. Keane, and S. J. Cox

School of Engineering Sciences, University of Southampton, UK
{gep, eres, j.l.wason, z.jiao, ajk, sjc}@soton.ac.uk

Abstract

The process of design search and optimisation using
Computational Fluid Dynamics (CFD) is computationally
and data intensive, a problem well-suited to Grid
computing. The Geodise toolkit is a suite of Grid-enabled
design optimisation and search tools within the Matlab
environment. The use of these tools by the engineer is
facilitated by intelligent design advisers targeted initially
at CFD. The role of remote computation and data access
in constructing a Grid-enabled Problem Solving
Environment is discussed. The use of the Geodise toolkit
for design optimisation from within the Matlab
environment is considered with an exemplar problem.

1. Introduction

The process of design search and optimisation
involves the modelling and analysis of engineering
problems to yield improved designs. Design parameters
that the engineer wishes to optimise are identified, and a
measure of the quality of a particular design (the
objective function) is computed using an appropriate
model. A number of design search algorithms may then
be used to yield more information about the behaviour of
a model over the parameter space, and to
minimise/maximise the objective function to improve the
quality of the design. This process may include lengthy
and repetitive calculations to obtain the value of the
objective function with respect to the design variables.

Design optimisation with regard to fluid dynamics is
relevant to, amongst others, the aerospace, automotive
and oil industries. Computational Fluid Dynamics (CFD)
allows the engineer to analyse the properties of a design.
However, detailed analysis is computationally expensive.
To perform the numerous solutions required for extensive
parameter exploration during a design search in this
domain normally requires access to significant
computational resources.

The computationally intensive problem domain of
engineering design optimisation using CFD can be well
matched to the field of Grid computing using appropriate
search methods. Grid computing addresses the
technologies and infrastructure to allow large-scale
resource sharing and facilitate the performance of virtual

organisations (VOs) that form to solve science and
engineering problems [1]. Fundamental to Grid
computing is the exposure and discovery of remote
resources, in particular compute and data resources, that
may represent a heterogeneous mix of technologies.

The Geodise project [2] aims to aid the engineer in the
design process by making available a suite of design
optimisation and search tools and CFD analysis packages
integrated with distributed Grid-enabled computing, data,
and knowledge resources. Facilitating the use of such
design search tools requires the integration of intelligent
design advisers, which are able to support the engineer
throughout the design process by providing ontology
services, annotation services [3], and context sensitive
advice based on the states of the computation.

Engineering design search is also data intensive, and
data may be generated at different locations with different
characteristics. It is often necessary for an engineer to
access a collection of data produced by design and
optimisation processes to make design decisions, perform
further analysis and carry out post-processing. Databases
are valuable to expose the state of the design process to
context sensitive design advisers, allowing them to
provide dynamic advice to the user. Databases therefore
play an essential role in our architecture, where it is
important to capture the process of how results are
obtained in addition to storing the results themselves.

Traditionally, data in many scientific and engineering
disciplines have been organised in application-specific
file structures, and a great deal of data accessed within
current Grid environments still exists in this form [4].
When there are a large number of files it becomes
difficult to find, compare and share the data. Here we
focus upon providing data management in an engineering
environment by leveraging existing database tools that are
not commonly used in this field, and making them
accessible to users of the system. We use databases to
store, maintain and access data associated with result and
intermediate files, and authorisation control to improve
the accessibility of the data and to encourage
collaborations among the engineers. An important issue
regarding data sharing in a VO is data access control,
which includes authentication and authorisation.
Authentication involves verifying the claimed identity of
a user, whereas authorisation checks an authenticated

users access rights for specific data and computational
resources. A consistent access control mechanism for all
the resources in a VO is required.

We adopt a service approach for database integration
into a Grid environment, providing other Grid
applications with a well-defined interface for accessing
and archiving data. The Data Access and Integration
Services (DAIS) Working Group of the Global Grid
Forum (GGF) [5] are developing requirements,
functionalities and standards for Grid Database Services
[4][6] in the Open Grid Services Architecture (OGSA)
[7]. The DAIS activities were initiated by the UK e-
Science Programme Database Task Force [8]. In the
future each of our Geodise specific data management
services will communicate with the underlying databases
through such services.

All these objectives impose a number of requirements
upon our choice of environment. The environment should
provide an intuitive interface to the available Grid
resources. A Grid-enabled Problem Solving Environment
(PSE) abstracts the complexities of accessing the Grid by
providing a complete suite of high level tools designed to
tackle a particular problem area [9]. Nimrod/G [10] is a
tool that facilitates parameter studies over computational
Grids. Triana [11] is a graphical programming
environment which abstracts the complexities of
composing distributed workflows.

Whilst it is possible to reduce the complexity of the
technologies faced by the user, it is important that the
environment chosen has the flexibility to tackle the
subtleties of a wide range of workflows within the
problem domain. A previous prototype that consisted of a
wizard style web portal that guided the user through a
design optimisation problem [12] proved inflexible, and
the wizard would not scale to encompass a much larger
number of problems. The complexity and variation of the
workflows involved in the design process, mean that a
scriptable environment that allows the user to tailor
workflows to the task in hand is valuable.

Here the user interface used to expose the functionality
provided by the Geodise PSE is the commercial Matlab
environment [13]. The Matlab package provides a fourth
generation language for numerical computation, built-in
math and graphics functions and numerous specialised
toolboxes for advanced mathematics, signal processing
and control design. The Matlab product is widely used in
academia and industry to prototype algorithms, and to
visualise and analyse data. Matlab 6.5 also features a
number of 'just-in-time' acceleration technologies to
increase the performance of native Matlab code.

The rationale behind adopting Matlab as the user
interface for the Geodise PSE is pragmatic. As a toolkit
that may be integrated into an environment routinely used
by our industrial and academic partners the Geodise PSE
becomes a flexible tool, part of the engineer’s arsenal.

The NetSolve system [14] which uses a client-server
architecture to expose platform dependent software
libraries has also successfully adopted Matlab as a user
interface.

The final Geodise toolkit will be composed of a
hierarchy of components. Low level compute and
database functions will be available to the user, in
addition to powering a number of higher level design
search, pre/post-processing, and CFD functions. All of
these components will be available through a suite of
intelligent design advisers that will guide the user through
the design process, and facilitate the use of toolkit
components.

The remainder of this paper focuses on the process of
exposing Grid enabled resources to the Matlab
environment, allowing us to compose the required low
level compute and data access functionality. We first
describe the architecture and the functionality of the
computation and database components of the toolkit. We
then demonstrate the use of these functions in an example
iteration of the design process.

2. Geodise Toolkit

The fundamental technologies behind the compute and
data components of the Geodise toolkit are currently
distinct and are described below.

2.1. Computation

The user of the Geodise toolkit acts as a client to
remote compute resources that are exposed as Grid
services. Users should be authenticated, and then
authorised to access resources to which they have rights.
They need to be able to submit their own code to compute
resources, or run software packages that are available as
services. The user should be able to discover the available
resources, decide where to run a job and be able to
monitor its status. It is essential that the user be able to
easily retrieve the results of a simulation. Additionally
the requirements of design search and optimisation mean
that compute resources must be available
programmatically to algorithms that may initiate a large
number of computationally intensive jobs serially or in
parallel.

The Globus toolkit [15] provides middleware that
allow the composition of computational grids through the
agglomeration of resources which are exposed as Grid
services. This middleware provides much of the
functionality required by our toolkit including
authentication and authorisation (GSI), job submission
(GRAM), data transfer (GridFTP) and resource
monitoring and discovery (MDS).

Client software to Globus Grid services exists natively
on a number of platforms and also via a number of

Commodity Grid (CoG) kits [16] that expose Grid
services to ‘commodity technologies’; including Java
[17], Python, CORBA [18], and Perl. By using client
software to Grid services written for these commodity
technologies the developer of a PSE is able to remain
independent of platform and operating system.

The independence allowed by adopting a commodity
technology motivated development of the Geodise toolkit
over the Grid service client APIs of the Java CoG kit
v.0.9.13 [17]. Java [19] is a mature technology that runs
compiled byte-code within a virtual machine. The Matlab
environment itself runs within a Java Virtual Machine
(JVM), and provides an external interface which allows
Java classes to be instantiated and invoked easily within
the Matlab workspace. The support of Java version 1.3.1
by Matlab 6.5 provides the utility which makes the Java
language suitable for programming Grid middleware.

The Java CoG provides a number of low-level
mappings, in the form of a number of Java packages,
which are APIs to the respective Globus Grid service
clients. To expose the functionality available from the
Java CoG to the Matlab user it was important to present
functions which are consistent with the behaviour and
syntax of the Matlab environment. Functions are written
in the interpretive Matlab language, and these call Java
classes which access the Java CoG API. Functions are
written with the intention that they may be incorporated
programmatically into the higher level components of the
toolkit.

Table 1 describes the compute functions used by the
Geodise 0.3 system. This set of functions describes the
minimum functionality required to allow the user to run
jobs on Globus compute resources. The functions may be
loosely categorised into those concerned with the user’s
credentials, job submission to the Globus Resource
Allocation Manager (GRAM), and file transfer.

Table 1: Compute commands.

Function Name Description
gd_createproxy Creates a Globus proxy certificate from

the user's credentials
gd_jobsubmit Submits a GRAM job, specified by a

RSL string, to a Globus server. Returns
a job handle to the user.

gd_jobstatus Returns the status of the GRAM job
specified by a job handle.

gd_jobkill Terminates the GRAM job specified by
a job handle.

gd_listjobs Returns job handles for all GRAM jobs
associated with the users credentials
registered on a MDS server.

gd_getfile Retrieves a file from a remote host using
GridFTP.

gd_putfile Transfers a file to a remote host using
GridFTP.

The Grid Security Infrastructure (GSI) [20] used by
the Globus toolkit is based upon the Public Key
Infrastructure (PKI) [21]. Under the PKI an individual’s
identity is asserted by a certificate that is digitally signed
by a Certificate Authority within a hierarchy of trust. In
an extension to this standard the GSI allows a user to
delegate their identity to remote processes using a
temporally limited proxy certificate signed by the user’s
certificate. The toolkit command gd_createproxy
allows a user to create a Globus proxy certificate within
the Matlab environment, essentially creating a point of
single sign-on to the Grid resources that the user is
entitled to use.

The gd_jobsubmit command allows users to submit
compute jobs to a GRAM job manager described by a
Resource Specification Language (RSL) string. The
gd_jobsubmit command returns a unique job handle
which identifies the job. The job handle may be used to
query or terminate the user’s job. In addition the
gd_listjobs command may be used to query a
Monitoring and Discovery Service (MDS) to return all
the job handles associated with the user’s certificate.

Two file transfer commands are provided to allow
users to transfer files to and from Grid-enabled compute
resources to which they have access. These commands
support the high performance file transfer protocol
GridFTP [22]. The GridFTP protocol defines a number of
extensions to the FTP protocol to enable transfer of high
volumes of data.

2.2. Database

Users need a simple, transparent way to store files in a
repository along with additional information (metadata)
about those files which will make it easier for members of
a VO to find the files at a later date and use them
effectively. This metadata should be generated
automatically where possible and be provided by the user
when necessary. They should be able to specify who else
can discover and retrieve these files. A query mechanism
should be available with facilities for interactive and non-
interactive use, so that files can be located
programmatically in scripts. The engineer should be able
to specify what kind of file they are looking for in an
intuitive manner without necessarily needing knowledge
of a database query language (e.g., SQL). Ideally the user
should not need to know the name of the database or
machine their data is stored on, or its underlying storage
mechanism. It should also be possible to locally record a
unique identification number for accessing the file once it
has been archived and use that handle at a later date to
retrieve the file.

A simulation or optimisation may take a long time and
rather than ever repeat parts of the process it would be
advantageous to store files for future reuse. For

performance reasons it is desirable to store files close to
where they will be used the most, usually the site where
they were produced. However, accessibility by users at
other sites in a VO should also be considered if
collaboration and sharing is to be encouraged. A secure
and reliable transport mechanism is required and GridFTP
meets both of these requirements. Unique IDs are used to
prevent files belonging to different users being
overwritten. A file location service keeps a record of file
IDs and locations in a database so that the unique
identifier is all that is required in order to locate the file.

When there are numerous result files in various
locations it becomes difficult to know which ones to
retrieve when needed and even harder to share them. A
solution to this problem is to store and retrieve data files
based on additional descriptive metadata, for example
standard file metadata such as file name and size, and
application specific metadata such as the number of
variables used in an optimisation, and their description or
numerical values. Providing a way to find files of interest
based on their characteristics rather than their location in
a file system gives users a more effective way to manage
their own data, provides a means for reuse and
collaboration, and may act as a source for advice based on
similar examples of a given problem.

In our architecture we use relational databases for
structured data such as authorisation information because
they are mature, reliable and scalable. Relational
databases also have a well defined standard interface
which allows the development of generic tools for a
number of operations such as creating interfaces and
constructing queries. We have also chosen XML [23]
repositories for more flexible storage of complex, deeply
nested engineering application specific metadata. We
therefore require a set of services that allow us to access
and interrogate both types of data storage in a standard
way. Other projects are tackling this problem for
relational databases [24] and XML repositories [25] and
we will follow these projects closely and use
implementations that follow the proposed standards from
OGSA – DAIS [6].

In Geodise 0.3 we have implemented tailored web
services that provide API interfaces to specific databases.
A web service is a self-describing programmable
component that can be discovered and invoked over the
web. The web service interface is described in a standard
format using the Web Services Description Language
(WSDL) [26]. Methods specified in the WSDL may be
invoked using the Simple Object Access Protocol (SOAP)
[27], which uses a combination of XML and HTTP to
transfer data between web services regardless of their
underlying programming language or platform. One
example from the Geodise 0.3 implementation is the
ability of a Java client code running on Linux to

communicate, using the Apache SOAP API [28], with
.NET web services on a Microsoft server.

The metadata service provides a means for metadata to
be stored in a database, queried and retrieved by client
programs. The metadata service must manage a
combination of standard and application specific custom
metadata. The existing system uses relational databases to
store standard metadata and an XML repository for
custom metadata, as it is a more extensible option. The
user specifies their custom metadata as a Matlab structure
which is then converted into XML using the XML
toolbox for Matlab [29] and sent to the metadata service
for storage. Similarly, when a query is performed the
XML metadata results are converted back into a structure
before displaying them to the user.

An interactive, graphical query interface is also
provided in which a user specifies their selection criteria
in a web form generated based on the metadata structure.
In this interface there is an option to generate Matlab
code needed for retrieving selected files that match the
criteria, which can then be pasted into the user's own
Matlab script.

In our current implementation, the authentication of a
user is achieved by using GSI [20]. Authorisation is
implemented as a service which uses a database of
registered users to keep track of permissions on data and
map between Globus certificate subjects and user IDs.
Authorisation exists at different levels of granularity and
must be consistent for metadata and files. A user is first
assigned a role which determines their access to the
repository, for example certain roles can write data while
others may only read data. Role based access models are
important for collaborative working, when the individual
performing a role many change over time and when
several individuals may perform the same role at the same
time [4][30]. A user’s read access to the repository is
restricted to their data and that of any other user who has
granted them permission.

Table 2 describes the Geodise 0.3 database functions.
These functions provide users with the ability to store
files in a repository with associated metadata, query the
metadata and retrieve the files, providing they have the
correct access rights.

Table 2: Database commands.

Function Name Description
gd_archive Stores a file in a repository with

associated metadata.
gd_retrieve Retrieves a file from the repository to

the local machine.
gd_query Retrieves metadata about a file based on

certain restrictions.

The gd_archive function will store a given file in a
repository for an authenticated user. The function is able
to generate a structure containing some standard metadata
for the file, such as its local name, size, format, and
creation time. The user may add additional metadata, for
example comments, custom information specific to that
format, and a list of users or groups who may access the
file. The function then transports the file to a server using
GridFTP and also sends the metadata to a database
accessed via a web service. The gd_archive function
returns a unique handle which can be used to retrieve the
file at a later date.

The metadata that is stored can be queried by an
authorised user with the gd_query command, in order to
discover files that have certain characteristics and obtain
information about them, such as their handle for retrieval.
The gd_retrieve function will locate a file based on a
given file handle and return it to a local directory.

3. Geodise 0.3 Application Exemplar

To demonstrate the possible use of our Grid-enabled
Matlab toolkit we choose a basic problem of fluid
dynamics, which is the two dimensional, external, laminar
flow over a NACA four digit airfoil. A sketch of the
problem is given in Figure 1. At the velocity inlet the
assumed free-stream velocity profile is constant, and the
angle of attack is measured in the counter-clockwise
direction to the horizontal. The upper and lower
boundaries are periodic, and we have a pressure outlet on
the right hand side of the computational domain. The
airfoil profiles are generated by using standard NACA
four digit expressions [31].

V
el

oc
ity

 in
le

t

Periodic

Pr
es

su
re

 o
ut

le
t

Periodic

α

Figure 1. NACA four digit airfoil problem
with boundary conditions. Here αααα is the
angle of attack.

The above mentioned problem can be solved by using
various finite element analysis tools. We will use two
commercially available codes, i.e. Gambit and Fluent
[32], for the mesh generation and solution processes,
respectively.

In general the process of obtaining a numerical
solution on a remote Globus server involves at least the
following steps:
1. The user generates a Grid proxy by entering their

password.
2. The user generates data and input files required for the

mesh generation and analysis software, and transfers
them to the remote Globus server.

3. The mesh generation and analysis tools are run on the
Globus server and intermediate files are queried to
retrieve information regarding the mesh quality and
the convergence of the solution.

4. If everything seems satisfactory the user transfers the
simulation results to the local file system, checks the
objective function values and possibly visualizes the
simulation results in Matlab, or a third party
product/plug-in.

Since the Grid proxy is required to use the Grid-

enabled resources, the user initiates their Grid proxy
certificate by using the gd_createproxy command.
This command invokes the Java CoG, which in turn pops
a window where the user can enter their password. After
the user enters their password and presses the “Create”
button, a proxy certificate is generated for the user.

Now, the user generates the vertex file of a NACA
four digit airfoil, which is simply a text file containing the
coordinates of the airfoil. The vertex file is transferred to
the remote Globus server where it will be used by the
mesh generation tool Gambit.

The next step involves the preparation of journal files
for Gambit and Fluent and transferring them to the
Globus server. These journal files are tailored according
to various input parameters which are entered by the user.
A Gambit journal file informs Gambit to use the vertex
file as the input file, to mesh the domain by using a given
mesh size parameter, and to export a Fluent compatible
mesh file as output. Similarly, the Fluent journal file
instructs that program to use the mesh file as input, to use
inlet velocity and angle of attack parameters in the
numerical solution, and to export a data file after the
solution converges. When the journal files are ready, the
user transfers them to the remote Globus server by using
the gd_putfile(<FQHN>, <Local File>, <Remote
File>) Matlab command. Here, <FQHN> is the fully
qualified host name of the remote Globus server. A
snapshot of this step is shown in Figure 2. These steps
can be categorized as the initial data preparation and
transfer, and a flowchart of this process is given in Figure
3.

Figure 2. Generating a Fluent journal file in
Matlab environment, and transferring it to a
Globus server. Here, the user inputs are the
inlet velocity and the angle of attack.

Figure 3. Initial data flow during the
generation of the Grid proxy, and
preparation of data and journal files.

After the initial data preparation step is complete the

user can submit their jobs to the remote Globus server by
using the gd_jobsubmit(<RSL>, <FQHN>) command.
Here, the <RSL> describes the name of the executable on
the Globus server, the executable's command line
arguments, the names of standard input, output and error
files, etc. After the job submission the gd_jobsubmit
command returns a job handle back to the Matlab
environment, which is later used to check the status of the
submitted job.

Mesh generation and analysis steps are also
summarized in Figure 4 as a process flowchart. A
properly generated mesh file is required by the analysis
tool, the user must generate the mesh file by submitting
the geometry to the Gambit mesh generation tool. The
user must wait until Gambit finishes meshing, and the
Globus server changes its status from ‘ACTIVE’ to
‘DONE’. Additionally, the user needs to make sure that
the mesh generation process succeeds, and the quality of
the generated mesh is acceptable for the analysis tool.
Therefore, before running the analysis tool the state of the

mesh generation, and mesh quality are checked by
transferring the standard error file of Gambit to the local
file system and parsing the mesh quality information from
that file.

Figure 4. Process flow diagram for mesh
generation and analysis tools.

If everything is satisfactory, the user now can submit

the analysis job on the remote Globus server, get back a
job handle, check the status of the job, and retrieve
convergence information and objective function values by
using a very similar process (Figure 5 and Figure 6).
Finally, the solution can be transferred back to the local
file system and visualized in Matlab (Figure 7).
Throughout this process intermediate and solution files
can be archived in the Geodise repository, with the
gd_archive command. By associating metadata with the
files the design archive may be accessed interactively or
programmatically when required using gd_query (Figure
8).

Figure 5. Running Fluent on the Globus
server by using a proper RSL string and
previously generated journal file. The job
status is polled every ten seconds.

If design search is being carried out this process will
be repeated as new and possible improved designs are
considered. If Design of Experiment methods are being
used to create response surface models [33] multiple runs
may be scheduled in parallel and the resulting data
archive used to study the design problem.

Figure 6. Transferring Fluent output file to
the local file system, and parsing it to
retrieve objective function values.

Figure 7. Visualizing the data file in Matlab

environment.

Figure 8. The Web interface showing query
results from the database.

4. Conclusions and Future Work

The choice of the Matlab environment appears to be a
pragmatic decision, providing a flexible and robust user
interface for Grid computing. The Java CoG [17]
provides a valuable platform independent client side API
for the access of Globus Grid-enabled resources.
Database technologies have an important role to play in
engineering design and optimisation and are suitable for
managing contextual and technical metadata associated
with the design processes, and facilitate data sharing
among engineers. The use of web services for API access
to databases is beneficial for creating usable client side
functions and facilitating communication between
different languages and platforms.

By exposing the compute and data functionality as
toolkit components we are able to construct high level
functions which utilise Grid resources for CFD and
design search tasks. Given commands in a high level
interpretive language it is straightforward for the engineer
to exploit available Grid-enabled resources to tackle
computationally and data intensive tasks.

Future work on this project will focus on the creation
of high level application components. This work will
include the exposure of heterogeneous legacy code to the
PSE. Refining the existing low-level compute
components will involve exposing additional client side
tools to allow the user to discover the available compute
resources, and to make an informed decision where to
submit compute jobs. Support for high-performance third
party file transfer will be included.

A future requirement for a fault tolerant data
management system is the provision of a local personal
metadata archive which replicates the data stored in the
main repository so that users are still able to locate and
retrieve their own files if the central metadata service or
external network is down. In order to preserve
consistency between files and their metadata, updates
must be controlled through the Geodise API. Users
should be prevented from removing or overwriting files
in the repository by any other means, for example using
GridFTP directly. Data lifetime management is another
issue, i.e., a mechanism is needed to specify how long a
collection of data will be stored in Geodise repository,
and be able to extend the lifetime, or perform clean up
tasks.

We expect that the architectures of the computational
and database components will converge with a move to
an Open Grid Services Architecture (OGSA) [7] model.
The implementation of OGSA defines a number of
extensions to standard XML web services that provide the
common functionality required by both the computational
and database components.

Acknowledgements

This work is supported by the GEODISE e-Science
pilot project (UK EPSRC GR/R67705/01). The authors
gratefully acknowledge many helpful discussions with the
GEODISE team, and researchers from the myGrid e-
Science project team (UK EPSRC GR/R67743/01). We
thank Fluent, Microsoft and Intel for ongoing support.

References

[1] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of

the Grid: Enabling Scalable Virtual Organisations,
International Journal of Supercomputer Applications,
15(3):200-222, 2001.

[2] The Geodise Project. http://www.geodise.org/
[3] L. Chen, N. R. Shadbolt, F. Tao, S. J. Cox, A. J. Keane,

C. Goble, A. Roberts, P. Smart. Engineering Knowledge
for Engineering Grid Applications, Proceedings of the
Euroweb 2002: The Web and the GRID: from e-science to
e-business, 12-24, 2002.

[4] M. P. Atkinson, V. Dialani, L. Guy, I. Narang, N. W.
Paton, D. Pearson, T. Storey, and P. Watson. Grid
Database Access and Integration: Requirements and
Functionalities, Database Access and Integration Services
Working Group Document, 2002.

[5] Global Grid Forum. http://www.gridforum.org/
[6] A. Krause, S. Malaika, G. McCance, J. Magowan, N. W.

Paton, and G. Riccardi. Grid Database Service
Specification, Database Access and Integration Services
Working Group Document, 2002.

[7] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The
Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration, Open
Grid Service Infrastructure Working Group Document,
2002.

[8] N. Paton, M. Atkinson, V. Dialani, D. Pearson, T. Storey,
and P. Watson. Database Access and Integration Services
on the Grid, UK e-Science Programme Technical Report
Series, 2002.

[9] G. von Laszewski, I. Foster, J. Gawor, P. Lane, N. Rehn,
and M. Russell. Designing Grid-based Problem Solving
Environments and Portals, 34th Hawaiian International
Conference on System Science, 2001.

[10] D. Abramson, J. Giddy, and L. Kotler. High Performance
Parametric Modelling with Nimrod/G: A Killer
Application for the Global Grid, Proceedings of the
International Parallel and Distributed Processing
Symposium, 520-528, 2000.

[11] Triana. http://www.triana.co.uk/
[12] S. J. Cox. Grid Enabled Optimisation and Design Search

for Engineering (GEODISE), NeSC Workshop on
Applications and Testbeds on the Grid, 2002.

[13] Matlab 6.5. http://www.mathworks.com/
[14] H. Casanova and J. J. Dongarra. NetSolve: A Network

Server for Solving Computational Science Problems,
International Journal of High Performance Computing
Applications, 11(3):212-223, 1997.

[15] The Globus Project. http://www.globus.org/

[16] Commodity Grid Kits. http://www.globus.org/cog/
[17] G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A

Java Commodity Grid Kit, Concurrency and
Computation: Practice and Experience, 13(8-9):643-662,
2001.

[18] M. Parashar, G. von Laszewski, S. Verma, J. Gawor, K.
Keahey, and N. Rehn. A CORBA Commodity Grid Kit,
Concurrency and Computation: Practice and Experience
(to appear), 2002.

[19] Java 2. Sun Microsystems Inc., http://java.sun.com/
[20] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke,

J. Volmer, and V. Welch. National-Scale Authentication
Infrastructure, IEEE Computer, 33(12):60-66, 2000.

[21] IETF PIKX Working Group. http://www.imc.org/ietf-
pkix/

[22] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I.
Foster, C. Kesselman, S. Meder, V. Nefedova, D.
Quesnel, and S. Tuecke. Secure, Efficient Data Transport
and Replica Management for High-Performance Data-
Intensive Computing, IEEE Mass Storage Conference,
2001.

[23] T. Bray, J. Paoli, and C. M. Sperberg-McQueen.
Extensible Markup Language (XML) 1.0, W3C
Recommendation, 1998.

[24] B. Collins, A. Borley, N. Hardman, A. Knox, S. Laws, J.
Magowan, M. Oevers, E. Zaluska. Grid Data Services -
Relational Database Management Systems (Version 1.1),
Database Access and Integration Services Working
Group Document, 2002.

[25] A. Krause, K. Smyllie, and R. Baxter. Grid Data Service
Specification for XML Databases, Database Access and
Integration Services Working Group Document, 2002.

[26] R. Chinnici, M. Gudgin, J. Moreau, and S. Weerawarana.
Web Services Description Language (WSDL) 1.2, W3C
Working Draft, 2002.

[27] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, and
H.F. Nielsen. SOAP Version 1.2, W3C Working Draft,
2002.

[28] Apache SOAP. http://xml.apache.org/soap/
[29] M. Molinari. XML Toolbox for Matlab (Version 1.0),

GEM/Geodise Technical Report, 2002.
[30] D. Pearson. Data Requirements for The Grid: Scoping

Study Report, Database Access and Integration Services
Working Group Document, 2002.

[31] I. Abbott and A. von Doenhoff. Theory of Wing Sections.
Dover Publications, Inc., New York, 1959.

[32] Fluent Web site. http://www.fluent.com/
[33] D. Jones, M. Schonlay, and M.Welch. Efficient Global

Optimization of Expensive Black Box Functions, Journal
of Global Optimisation, 13:455-492, 1998.

